Functional Modeling of Copper Nitrite Reductases: Reactions of NO₂⁻ or NO with Copper(I) Complexes

Partha P. Paul and Kenneth D. Karlin*

Department of Chemistry, The Johns Hopkins University Charles and 34th Streets, Baltimore, Maryland 21218 Received March 6, 1991

From an environmental chemistry perspective, transitionmetal-mediated reactions of nitrogen oxides (NO_x) are of interest,¹ while anaerobic denitrifying bacteria use NO_x species as electron acceptors through metalloenzyme-catalyzed conversions.² The reduction of NO_2^- to nitrous oxide (N₂O) (eq 1) is catalyzed by either Cu or Fe enzymes,²⁻⁵ although there also exist separate NO-reductases that effect the N-N coupling reaction of inter-mediate NO(g) that may be produced.^{2a,4c,5} Following our efforts

$$2NO_2^- + 4e^- + 6H^+ \rightarrow N_2O + 3H_2O$$
(1)

in Cu ion mediated reduction of O2,6 we have developed an interest in biomimetic NO_x -copper reactivity, especially considering the few examples of {Cu-NO} species.^{7,8} Here, we report the functional modeling of copper nitrite reductases,9 providing examples where reactions of NO_2^- or NO with Cu(I) complexes lead to the stoichiometric productions of N_2O with concomitant oxodicopper(II) compound formation.

We recently reported that the reaction of dicopper(I) complex 1 (PY = 2-pyridyl) with nitrosonium cation (NO⁺) gives a stable $[Cu_2^{11}-(NO^-)]$ complex 2 (ν_{NO} = 1536 cm⁻¹), which was structurally characterized (Scheme I).⁷ We now find that 2 can also be generated by the reaction of $n-Bu_4N(NO_2)$ with 1 in the presence of stoichiometric amounts of acid $(HPF_6 \cdot Et_2O)$.¹⁰ This dehydration of NO_2^- (an NO⁺ equivalent)¹¹ to produce 2 is reminiscent of the enzyme reaction since, in Achromobacter cycloclastes nitrite reductase, there is evidence for a copper-nitrosyl intermediate ([E-Cu-NO]⁺) being produced from $NO_2^{-3,12}$

We can also mimic the proposed enzymic reaction of NO_2^{-1} with the $[E-Cu-NO]^+$ intermediate (giving N₂O),³ resulting in an

(3) (a) Hulse, C. L.; Averill, B. A.; Tiedje, J. M. J. Am. Chem. Soc. 1989, 111, 2322-2323.
 (b) Weeg-Aerssens, E.; Tiedje, J. M.; Averill, B. A. J. Am. Chem. Soc. 1988, 110, 6851-6856.
 (c) Ye, R. W.; Toro-Suarez, I.; Tiedje, J. M.; Averill, B. A. J. Biol. Chem., in press.
 (d) Jackson, M. A.; Tiedje, J. M.; Averill, B. A. J. Biol. Chem., in press.

M.; Averill, B. A., submitted for publication. (4) (a) Goretski, J.; Hollocher, T. C. J. Biol. Chem. **1990**, 265, 889-895. (b) Goretski, J.; Zafiriou, O. C.; Hollocher, T. C. J. Biol. Chem. 1990, 265, 11535-11538. (c) Hoglen, J.; Hollocher, T. C. J. Biol. Chem. 1989, 264, 7556-7563.

(5) Carr, G. J.; Ferguson, S. J. Biochem. J. 1990, 269, 423-429. (b) Heiss, B.; Frunzke, K.; Zumft, W. G. J. Bacteriol. 1989, 171, 3288-3297.

(6) Tyeklár, Z.; Karlin, K. D. Acc. Chem. Res. 1989, 22, 241-248 and references cited therein.

(7) Paul, P. P.; Tyeklår, Z.; Farooq. A.; Karlin, K. D.; Liu, S.; Zubieta, J. J. Am. Chem. Soc. 1990, 112, 2430-2432 and references cited therein. (8) Previous reports including reactions of NO with Cu salts include the following: (a) Fraser, R. T. M.; Dasent, W. E. J. Am. Chem. Soc. 1960, 82, 348-351. (b) Mercer, M.; Fraser, R. T. M. J. Inorg. Nucl. Chem. 1963, 25, 525-534. (c) Yordanov, N. D.; Terziev, V.; Zhelyakowa, G. G. Inorg. Chim. Acta 1982, 58, 213–216. (d) Doyle, M. P., Siegfried, B.; Hammond, J. J. J. Am. Chem. Soc. 1976, 98, 1627–1629.

(9) A X-ray crystallographic study on Achromobacter cycloclastes nitrite reductase discloses an active site with two separate but apparently electron-ically linked copper ion centers (type 1 and 2, Cu-Cu \sim 12.5 Å). There is also evidence that nitrite substrate binds at the type 2 site. Godden, J. W.; Turley, S.; Teller, D. C.; Adman, E. T.; Liu, M.-Y.; Payne, W. J.; LeGall, J. Science, in press.

(11) Glidewell, C. J. Chem. Educ. 1989, 66, 631-633 and references cited therein

(12) Suzuki, S.; Yoshimura, T.; Kohzuma, T.; Shidara, S.; Masuko, M.; Sakurai, T.; Iwansaki, H. Biochem. Biophys. Res. Commun. 1989, 164, 1366-1372.

overall copper-mediated conversion of 2 mol of NO₂⁻ to give nitrous oxide (eq 1 and Scheme I). Here, further reaction of *n*-Bu₄N(NO₂) (1 equiv) with 2 produces N₂O (79% yield),¹³ oxo-dicopper(II) complex 3 (60%), and $O_2 \text{ gas.}^{14}$ If the reaction is carried out in the presence of PPh₃ (1 equiv), the yield of N_2O

0002-7863/91/1513-6331\$02.50/0 © 1991 American Chemical Society

^{(1) (}a) Mingos, D. M. P.; Sherman, D. J. Adv. Inorg. Chem. 1989, 34, 293-377. (b) Bottomley, F. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Publishing Corporation: New York, 1989; Vol. 2, pp 115-222.

^{(2) (}a) Hochstein, L. I.; Tomlinson, G. A. Annu. Rev. Microbiol. 1988 42, 231-261. (b) Payne, W. J. Denitrification; Wiley-Interscience: New York, 1981

⁽¹⁰⁾ The reaction was performed in the presence of activated molecular sieves $(4, \underline{A})$, because 2 is hydrolytically unstable.

⁽¹³⁾ N₂O was determined by sampling of the reaction flask headspace gas and using GC (Porapak Q (80/100) column (12 ft $\times 1/8$ inch)) using a TC detector (He and H₂, carrier and reference gases, respectively). GC yields were determined by using a calibration curve made by using known amounts of N₂O.

⁽¹⁴⁾ $[Cu_2(XYL-O^*)O](PF_6)$ (3-(PF₆)): Anal. Calcd for C₃₆H₃₉Cu₂F₆N₆O₂P: C, 50.29; H, 4.57; N, 9.77. Found: C, 50.86; H, 4.03; N, 9.34. UV-vis (CH₂Cl₂): $\lambda_{max} = 339$ (ϵ 3450), 618 (180). IR (Nujol) ν (PF) = 843 (s) cm⁻¹. $\mu_{RT} = 1.16 \,\mu_B/Cu$. Λ_m (CH₃CN) = 153 Ω^{-1} cm² mol⁻¹. 3-(PF₆) reacts with 3 PPh₃ to give O=PPh₃ and $[Cu_2(XYL-O^*)(PPh_3)_2]$. (PF₆). Dioxygen gas was qualitatively determined by passing the gases evolved through an alkaline pyrogallol test solution.⁶

is 97%, O₂ evolution is not observed, and O=PPh₃ is produced stoichiometrically. An oxidizing equivalent $(1/2O_2)$ is produced in these reactions since only two electrons (from 1) of the four needed (eq 1) have been provided.

We also find that nitric oxide (NO(g)) reacts with Cu(I)complexes to give copper-nitrosyl intermediates, which convert to oxo-dicopper(II) complexes and N₂O (Scheme II). These reactions further demonstrate (cf. Scheme I) the use of Cu^{II} ion (rather than H⁺) to help drive oxo-transfer reactions, trapping O²⁻ and producing Cu-O-Cu complexes. Thus, exposure of 1 to NO(g) at -80 °C in CH_2Cl_2 gives an unstable purple-brown solution ($\lambda_{max} = 380 \text{ nm}$). Standing or warming produces N₂O (96%) and oxo complex 3 (55%, isolated). A similar reactivity is observed for 4; the unstable intermediate ($\lambda_{max} = 358$ nm) decomposes to give a 56% yield of N_2O and oxo complex 5.15 The reaction of NO(g) with mononuclear Cu(I) complex 6 is more interesting because a deep purple -80 °C stable intermediate (7) forms in EtCN (Scheme II). This arises from the stoichiometric addition of 1 NO per copper ion complex 6 (manometry in EtCN at -80 °C; 1.09 ± 0.11 NO/Cu, three trials). Direct evidence for a copper-nitrosyl species was obtained by using FT-IR spectroscopy via in situ low-temperature monitoring.¹⁶ 1460-cm⁻¹ absorption is assigned to ν_{NO} on the basis of its shifting to 1446 cm⁻¹ when labeled ¹⁵NO (99%) is used. This particularly low energy ν_{NO}^{1a} value and the observed EPR silence of these purple solutions suggest a dinuclear Cu^{II} -(NO⁻)₂- Cu^{II} formulation for intermediate 7,¹⁷ perhaps facilitating the N-N coupling reaction to give the N₂O product (98%) observed. A dinuclear oxo-dicopper(II) complex (8) (78%) is again formed.¹⁸

Thus, we have shown that copper ion complexes can mediate N-N coupling reactions starting with NO_2^- or NO(g). The latter reactions appear to proceed via dinitrosyl intermediates, as is observed in the chemistry of other transition metals.^{1b,19} The present study provides the first example of a reaction of a metal-nitrosyl compound with nitrite (Scheme I);^{1b} N₂O generation makes this reaction notably reminiscent of Averill and Tiejde's proposal for N₂O production in the iron and copper enzymes.^{3,20} We have also provided the first authenticated example (by IR spectroscopy) of a {Cu-NO} complex (i.e., dinuclear 7) generated from a Cu(I) precursor and NO(g).

On the basis of the copper-mediated coupling of NO(g) we observe here (i.e., Scheme II), we suggest an alternate possible reaction pathway for N₂O production by protein nitrite reductases, not previously considered. Free $NO(g)^{2-5}$ may be formed via a prior one-electron reduction and dehydration of NO_2^- , and release. Attack of NO(g) on a separately formed enzyme (type 2)9 {Cu-NO} intermediate³ could proceed through a dinitrosyl {Cu-(NO)₂} intermediate, 16.19 leading to N-N coupling. Additional reduction (via type 1 Cu?)⁹ and protonation of a putative Cu- (N_2O_2) intermediate³ would complete the stoichiometric reaction (eq 1),

pected to be paramagnetic and thus EPR active. The low ν_{NO} and low-energy vis absorption (d-d transition) suggest a Cu¹¹-NO⁻ description, with a dinuclear formulation accounting for EPR silence through an antiferromagnetic coupling interaction. (b) 7 is unlikely to be a Cu-N₂O species; we observe

coupling interaction. (b) 7 is unlikely to be a Cu-N₂O species; we observe that N₂O does not react with any of the Cu complexes used in these studies, and M-N₂O species are rare.¹⁶ See: Vaughan, G. A.; Rupert, P. B.; Hillhouse, G. L. *J. Am. Chem. Soc.* **1987**, *109*, 5538-5539. (18) [[Cu(TMPA)]₂O](PF₆)₂:CH₂Cl₂ (8-(PF₆)₂:CH₂Cl₂): Anal. Calcd for C₃₇H₃₈Cl₂Cu₂F₁₂N₈OP₂: C, 40.45; H, 3.49; N, 10.20. Found: C, 40.47; H, 3.43; N, 10.64. UV-vis (C₂H₃CN): $\lambda_{max} = 403$ (ϵ 530), 736 (220), 900 (320). IR (Nujol) ν (PF) = 845 (s) cm⁻¹. $\mu_{RT} = 1.73 \, \mu_{B}/$ Cu. Λ_{m} (CH₃CN) = 259 Ω^{-1} cm² mol⁻¹ Ω^{-1} cm² mol

(19) (a) Eisenberg, R.; Meyer, C. D. Acc. Chem. Res. 1975, 8, 26–34. (b)
 Gwost, D.; Caulton, K. G. Inorg. Chem. 1974, 13, 414–417. (c) Haymore,
 B. L.; Ibers, J. A. J. Am. Chem. Soc. 1974, 96, 3325–3327. (20) Reaction of NO₂⁻ with 2 may generate a [Cu¹¹_(N₂O₃²⁻)-Cu¹¹] (e.g., attack on NO⁻) or [(NO⁻)-Cu¹¹-(NO₂⁻⁻)] (e.g., attack on Cu¹¹) species.^{3b}

giving nitrous oxide and water. In our model system, the chemistry is mediated and an extra electron supplied by the second copper ion, the latter being a role probably reserved for type 1 copper in the protein.

Further studies will deal with other aspects of Cu-NO, chemistry and mechanistic investigations of the systems described here.

Acknowledgment. We are grateful to the National Institutes of Health for support of this research.

Note Added in Proof. Recent studies with A. cycloclastes nitrite reductase^{3d} are consistent with a NO(g) rebound mechanism, which may well be analogous to the chemistry suggested here.

New Chiral Ligand for the Asymmetric Conjugate Addition of Organocopper Reagents to Enones

Alexandre Alexakis,* Stephane Mutti, and Jean F. Normant

Laboratoire de Chimie des Organo-Eléments, CNRS UA 473 Université Pierre et Marie Curie, 4, Place Jussieu F-75252 Paris Cedex 05, France

Received April 19, 1991

The asymmetric version of the conjugate addition reaction of organocopper reagents to enones is a long-pending problem. In the case of achiral enones this reaction was attempted either with chiral heterocuprates¹ or with chiral ligands.² Among the ligands of copper, trivalent phosphorus derivatives are the best ones,³ and we thought that chirality on the phosphorus atom itself would induce asymmetry during the conjugate addition. We present herein our results with the chiral phosphorus derivative 1, which demonstrate, for the first time, the effectiveness of this class of ligands in the conjugate addition of organocopper reagents. This compound⁴ is easily and quantitatively prepared from (-)ephedrine and HMPT (eq 1) and is configurationally homogeneous at the phosphorus stereogenic center. In the same manner were also prepared the phosphorus derivatives 2, 3, $4,^5$ 5,⁶ and 6^7 (Scheme I).

Derivatives 1-6 form soluble complexes with a CuX (X = Br, I) salt in Et₂O or THF. Reaction with an organolithium or Grignard reagent gives rise to an organocopper or cuprate derivative, according to the stoichiometry. The transfer of the nBu

0002-7863/91/1513-6332\$02.50/0 © 1991 American Chemical Society

⁽¹⁵⁾ $[Cu_2(N4)O](PF_6)_2$ (5-(PF_6)₂): Anal. Calcd for $C_{32}H_{40}Cu_2F_{12}N_6OP_2$: C, 40.81; H, 4.28; N, 8.92. Found: C, 40.71; H, 4.19; N, 9.38. UV-vis (CH₃CN): $\lambda_{max} = 370$ (ϵ 2040), 619 (130). IR (Nujol) ν (PF) = 840 (s) cm⁻¹. $\mu_{RT} = 1.01 \ \mu_B/Cu$. Λ_m (CH₃CN) = 297 Ω^{-1} cm² mol⁻¹. (16) At -75 °C by addition of NO(g) over a solution of 6, FT-IR spectra

were recorded using an internal-reflection probe incorporated as part of the low-temperature glass reaction vessel; Spectra-Tech Applied Systems, Inc., ReactIR Reaction Analysis System. (17) (a) A $[Cu-NO]^+$ adduct formed from $1Cu^1 + NO(g)$ would be ex-

⁽¹⁾ Among many other papers, see the following ones and the references (1) Among many other papers, see the following ones and the references therein: (a) Corey, E. J.; Naef, R.; Hannon, F. J. J. Am. Chem. Soc. 1986, 108, 7114. (b) Dieter, R. K.; Tokles, M. J. Am. Chem. Soc. 1987, 109, 2040.
(c) Bertz, S. H.; Dabbagh, G.; Sundararajan, G. J. Org. Chem. 1986, 51, 4953.
(d) Leyendecker, F.; Jesser, F.; Laucher, D.; Ruhland, B. New J. Chem. 1985, 9, 7. (e) Tanaka, K.; Ushio, H.; Suzuki, H. J. Chem. Soc., Chem. Commun. 1990, 795.

^{(2) (}a) Kretchmer, R. A. J. Org. Chem. 1972, 37, 2744. (b) Langer, W.; Seebach, D. Helv. Chim. Acta 1979, 62, 1710. (c) Leyendecker, F.; Laucher, D. Tetrahedron Lett. 1983, 24, 3517. (d) Leyendecker, F.; Laucher, D. New J. Chem. 1985, 9, 13.

^{(3) (}a) Posner, G. H. An Introduction to Synthesis using Organocopper Reagents; Wiley: New York, 1980. (b) Suzuki, M.; Suzuki, T.; Kawagishi, T.; Morita, Y.; Noyori, R. Isr. J. Chem. 1984, 24, 118 and references cited therein

 ⁽⁴⁾ Bernard, D.; Burgada, R. Phosphorus 1974, 3, 187.
 (5) Jugé, S.; Genet, J.-P. Tetrahedron Lett. 1989, 30, 2783.

⁽⁶⁾ Alexakis, A.; Mutti, S.; Mangeney, P.; Normant, J. F. Tetrahedron: Asymmetry 1990, 1, 437

⁽⁷⁾ Gros, P.; Buono, G.; Peiffer, G.; Denis, D.; Mortreux, A.; Petit, F. New J. Chem. 1987, 11, 573.